
Practical Unit Testing
“Good programmers write code, great programmers write tests.”

Peter Kofler, ‘Code Cop’

JSUG, June 2009

2

Who am I?

• Ph.D. in Applied Mathematics

• Java developer since 1999

• fanatic about code quality since 2004

• appointed ‘Code Cop’ in 2006

• Senior Software Engineer at s-IT Solutions

(Spardat), Erste Group

3

Agenda

• JUnit Basics

– Test Methods, Assertions, Fixtures

• Advanced Topics

– Privates, Mocks, Timings, Singletons, J2EE

• Tuning

• Code Coverage

• JUnit Extensions

– Tools, Scripting, JUnit and the Build

4

A Little Survey...

• Who knows xUnit?

• Who knows JUnit 4?

• Who ever wrote a unit test?

• Who writes tests and tries to write them

first?

• Who checks the coverage?

• Who ever produced a bug?

5

We Make Mistakes

• at least I do... ☺

• number of bugs proportional loc

– 2 bugs per 1.000 loc (7 or even more...)

– 1 bug per 10.000 loc in critical software

• be paranoid when you write software

– Assume you have lots of bugs.

– Try to find these bugs aggressively.

6

I find your lack of tests disturbing.

7

Wait - We Have Tests

• almost every project has some “tests”

• almost all of them are useless �

– experiments how to use some library

– main methods, waiting for user input, ...

– tests that initialise the whole application and

check nothing

– tests that fail since long, etc.

No You Don’t!

8

JUnit

• a unit testing framework

• active, dynamic black-box tests

– some call it white-box tests (tbd)

• works best with a number of small tests

• You should know it (no excuses!)

– You should use it (no excuses!)

– I will not explain it here � www.junit.org

9

“Keep the bar green to keep the code clean”

10

Test Methods

• unit test tests the methods of a single class

• test case tests the response of a single

method to a particular set of inputs

– multiple test cases for a single method

– public void testMethod() or @Test

– test methods should be short, simple

– tests without test methods are pointless

� Findbugs and PMD

11

Assertions

• Don’t do any output from your unit tests!

• check expectations programmatically

– assertEquals,assertNull,assertTrue,...

– test method without assert is pointless (����PMD)

– one test method - one assertion (tbd)

• some work around PMD with assertTrue(true)

• ���� PMD: UnnecessaryBooleanAssertion

• test runner reports failure on each test

12

Proper Assertions

• add messages to asserts (tbd) (� PMD)

• assertTrue(a.equals(b)) no message,

better use assertEquals(a,b) (� PMD)

• assert in Thread.run() not noticed

(� Findbugs: IJU_...)

• assert float in ranges of precision:
assertEquals(expected, actual,

 5*Math.ulp(expected))

13

Assertions (JUnit 4)

• assertArrayEquals(.) for atom arrays

and Object

• but assertEquals(int,int) removed

– not needed any more (auto boxing)

– problems with mixed params, e.g. (int,byte)

– JUnit 3: promoted to (int,int), succeeds

– JUnit 4: boxed to (Integer,Byte), fails

14

Asserting Exceptions

• JUnit 3 try-catch code:
try {

 // code that should cause an exception

 fail("no exception occurred");

} catch (SomeException success) {

 // check exception type/parameters

• JUnit 4: @Test(expected)annotation:
@Test(expected=SomeException.class)

public void testThrows() {

 // code that should cause an exception

15

Fixtures (JUnit 3)

• sets up data needed to run tests

• JUnit 3: setUp(), tearDown()

– don’t forget to call super.setUp() first

– don’t forget to call super.tearDown() last

– don’t forget it (!)

– Findbugs: IJU_SETUP_NO_SUPER,IJU_...

• for fixture in JUnit 3.x that runs only once,
use the TestSetup decorator

16

JUnit 3 TestSetup Decorator

public class TheTest extends TestCase {

 // test methods ...

 public static Test suite() {

 return new TestSetup(new TestSuite(TheTest.class)) {

 protected void setUp() throws Exception {

 super.setUp();

 // set-up code called only once

 }

 protected void tearDown() throws Exception {

 // tear-down code called only once

 super.tearDown();

 }

 };

17

Fixtures

• JUnit 4: @Before, @After

– run methods of super classes

– only once: @BeforeClass, @AfterClass

• test data in database is problematic

– test has to insert its own preconditions

– large data sets � DbUnit

• Remember: Test data is more likely to be

wrong than the tested code!

18

Test Code Organisation

• test code loc ~ functional code loc

• same quality as production code

– always built with test code

– execute tests as soon/often as possible

• parallel package hierarchy

– no *.test sub-packages! (tbd)

– folder test (simple), src/test/java (Maven)

– package-access!

19

Test Class Organisation

• create your own base test case(s)

– named *TestCase or *TC (not *Test)

– common methods, initialisation code

– custom asserts, named assert* (PMD)

• name test classes <tested class>Test

20

21

Agenda

• JUnit Basics �

– Test Methods, Assertions, Fixtures

• Advanced Topics

– Privates, Mocks, Timings, Singletons, J2EE

• Tuning

• Code Coverage

• JUnit Extensions

– Tools, Scripting, JUnit and the Build

22

Testing Private Data

• “Wishing for White Box Testing (i.e. check

a private field) is not a testing problem, it is

a design problem.”

– If you want to check internals - improve design.

• if you have to:

– Reflection: member.setAccessible(true)

23

Mocks

24

When to Use Mocks

• To have a “real” unit test (cut dependencies)

• “It is much simpler to simulate behaviour

than it is to recreate that behaviour.”

• use a mock when the real object is

– non-deterministic (e.g. current time)

– problematic during execution (e.g. user input)

– difficult to trigger (e.g. network error)

– not existing yet (team collaboration)

25

How to Mock an Object

• by hand

– implement its interface (Eclipse Ctrl-1)

– subclass it (beware complex constructors)

• java.lang.reflect.Proxy

– since 1.3

– only for interfaces

– nasty for more than 1 method

26

Dynamic Mock Frameworks

• EasyMock, jMock, ... (in fact since 1.5)

• mock interfaces (Proxy)

• mock non final classes (cglib)

import static org.easymock.EasyMock.*;

SomeInt mock = createMock(SomeInt.class);

expect(mock.someMethod("param")).andReturn(42);

replay(mock);

// run the test which calls someMethod once

verify(mock);

27

Mocks in Spring

• IoC make it easy, just set the mock

• combination of context/mocks

– needs mocks inside Spring:

<bean id="someMock" class="org.easymock.EasyMock"

 factory-method="createMock">

 <constructor-arg index="0" value="...SomeBean" />

</bean>

– see http://satukubik.com/2007/12/21/spring-tips-initializing-bean-using-easymock-for-unit-test/

28

Enabling Mocking

• Program to interfaces, not implementations.

– interfaces are easier to mock

• Law of Demeter

– style guideline

– “Only talk to your immediate friends.”

– calling methods on objects you get from other

collaborators is trouble - your mocks must

expose internal state through these methods

29

Limits of Mocking

• behave accordingly to your expectations

– Do you know the mocked class good enough?

• complex mocks are error prone

– e.g. state machines

– refactor using Law of Demeter

• replace the right classes

– not the tested ones!

– focus on what goes inside than what comes out

30

Testing Timings

• timings (e.g. timeouts) are difficult

– timing/scheduling is not guaranteed

– short timings almost always fail

– long timings slow down the execution

• You will never get it right!

– esp. not for Windows and Unix at same time

• � mock the timer

31

32

Singletons are evil!

• most overused design pattern

– typical: public static Instance getInstance()

– static methods (“mingletons”), e.g.
System.currentTimeMillis()

– static fields (“fingletons”)

– ThreadLocal

• most likely you have too many of them
• see http://c2.com/cgi/wiki?SingletonsAreEvil

33

Testing Singletons

• problems for testing

– evil

– unknown dependencies

– initialisation often expensive (fixture)

– side effects in same class loader

– concurrency issues when testing in parallel

– can’t mock

34

Testing Singletons “Brute Force”

• straight forward

– (fake) initialise singleton in fixture (setUp)

– use Ant’s forkmode=“perTest”

– slow2

• if singletons can be reset

– cleanup singleton in shutDown

– make sure double initialisation fails

– still slow, still no mock

35

Testing Singletons “AOP”

• context-sensitive modification with AspectJ

• returning a mock instead of proceeding

(around advice)

• per-test-case basis (using various pointcuts)
– execution(public void SomeTest.test*())

– cflow(inTest()) && //other conditions

• see http://www.ibm.com/developerworks/java/library/j-aspectj2/

• mock �, but .aj files get nasty

36

Refactor Singletons

• for new code - avoid singletons

• refactor

– pass singleton instance from outside to certain

methods as argument, mock it

– create a global registry for all singletons, which

is the only singleton then, register mocks there

– make whole singleton a Spring bean with

singleton scope, mock it

37

Testing J2EE - JNDI

• use mocks like Simple-JNDI or MockEJB

protected void setUp() throws Exception {

 super.setUp();

 MockContextFactory.setAsInitial();

 new InitialContext().bind("name", stuff);

}

protected void tearDown() throws Exception {

 MockContextFactory.revertSetAsInitial();

 super.tearDown();

}

38

Testing J2EE - JMS

• use mock implementation like MockEJB

• use in memory JMS like ApacheActiveMQ
<bean id="factory" class="..ActiveMQConnectionFactory">

 <property name="brokerURL” value="vm://broker?

 broker.persistent=false&

 broker.useJmx=false" />

</bean>

<bean id="queue" class="...command.ActiveMQQueue">

 <constructor-arg value="SomeQueue" />

</bean>

39

Testing J2EE - Servlet

• call them (HttpClient, HttpUnit)

– needs deployment and running server �

– integration test

– beware GUI changes

• run them in container (Cactus)

• embedded server (Jetty ServletTester)

• mock container (ServletUnit of HttpUnit)

• mock/implement interfaces yourself

40

Testing J2EE - EJB

• embedded server (Glassfish) ?

– all since EJB 3.1

• run them in container (Cactus)

• mock container (MockEJB)

• using an aspect to replace EJB lookups

• EJB 3.x are just POJOs �

41

42

Agenda

• JUnit Basics �

– Test Methods, Assertions, Fixtures

• Advanced Topics �

– Privates, Mocks, Timings, Singletons, J2EE

• Tuning

• Code Coverage

• JUnit Extensions

– Tools, Scripting, JUnit and the Build

43

Tune Test Performance

• profile test suite - it’s run very often!

• Ant/JUnit report contains execution times

• target longest running tests

– tune as any Java program (CPU, heap)

– mock expensive/slow objects

– avoid expensive set-up (e.g. Spring Context)

– move expensive set-up to @BeforeClass

44

Test Performance - Database

• database access is slow

• mock out database

– difficult for complex queries

• use embedded memory database

– e.g. HyperSQL DataBase (HSQLDB), H2

– beware of duplicating schema info

– Hibernate’s import.sql

45

DB/Integration Test Performance

• with database more an integration test

– no problem - we want to test this too

• don't use fixtures

• do not commit

• connection pool

• tune database access (as usual)

46

47

Agenda

• JUnit Basics �

– Test Methods, Assertions, Fixtures

• Advanced Topics �

– Privates, Mocks, Timings, Singletons, J2EE

• Tuning �

• Code Coverage

• JUnit Extensions

– Tools, Scripting, JUnit and the Build

48

Code Coverage

• tracks comprehensiveness of tests

– % of classes/methods/lines that got executed

– identifies parts of program lacking tests

• 85-90% is “good enough”

– can’t reach 100% (catch-blocks etc.)

– no need to test everything (getters etc.)

– at least focus on core systems (business critical)

49

Code Coverage Tools

• EMMA

– instrument classes offline or on the fly

– detects partial coverage (if/short circuit)

– Ant, Maven, Eclipse (EclEmma)

– even able to track Eclipse plugins

– also used in test staging to test the testers

• Cobertura

• etc.

50

“Don’t Be Fooled”

• comprehensiveness ≠ quality!

– high coverage does not mean anything

– tools like AgitarOne create it
• see http://www.ibm.com/developerworks/java/library/j-cq01316/

• “Test state coverage, not code coverage.”
(Pragmatic Tip 65)

– difficult to measure

• Crap4J “metric”

51

Development Process

• code test & class (or class & test)

• run tests with EclEmma (or on build)

– all important methods executed?

– all relevant if-branches executed?

– most common error cases executed?

– just browse the report line by line...

52

How to Get Coverage

• difficult to add tests to an existing program

• wasn’t written with testing in mind

• better to write tests before

• � Test Driven Development (TDD)

Red/Green/Refactor

• Design to Test (Pragmatic Tip 48)

53

But How To Test This?

54

Legacy Code

• ... is code without test. (Michael Feathers)

• write test for new features

• create tests for bug reports, then fix bugs

– Find Bugs Once (Pragmatic Tip 66)

• find insertion points/bring them under test
– for more see “Working Effectively with Legacy Code”

• refactor for testability (TestabilityExplorer)
– see http://code.google.com/p/testability-explorer/

55

But Management Won’t Let Me

• Testing is a mindset - You have to want it.

• A thoroughly tested program will take twice
as long to produce as one that's not tested.

– you need time to write tests

– argue for it

– or just lie �

• hide time in your estimations

• say the feature is not finished

• write tests before, so you can’t finish without tests

56

57

Agenda

• JUnit Basics �

– Test Methods, Assertions, Fixtures

• Advanced Topics �

– Privates, Mocks, Timings, Singletons, J2EE

• Tuning �

• Code Coverage �

• JUnit Extensions

– Tools, Scripting, JUnit and the Build

58

JUnit Extensions (e.g.)

• DbUnit - database fixtures

• HtmlUnit/HttpUnit - GUI-less browser

– typical for functional/integration tests

• JUnitPerf - measure performance

– no ordinary unit test � different package

• SWTBot - UI testing SWT/Eclipse

• XMLUnit - XML asserts

59

New Trend: Scripting Languages

• “Testing is a scripting problem.”

– dynamically typed, easier to write tests

• “If I can write tests in a rapid manner, I can

view their results quicker.” (Andy Glover)

• need tight Java integration

• e.g. using Groovy
– GroovyTestCase extends TestCase

– see http://www.ibm.com/developerworks/java/library/j-pg11094/

60

(J)Ruby Test::Unit

• typical xUnit implementation

• asserts like
– assert_raise, assert_throws

• advanced frameworks

– JtestR - JRuby integration “so that running

tests is totally painless to set up”

– RSpec - Behaviour Driven Development

framework for Ruby

61

ScalaTest

• run JUnit in ScalaTest

– with wrapper JUnit3WrapperSuite

• run ScalaTest in JUnit (JUnit3Suite)

• Specs - Behaviour Driven Development

• ScalaCheck - property-based testing

– automatic test case generation

– specify("startsWith", (a:String,

b:String) => (a+b).startsWith(a))

62

JUnit and The Build

• the build must be fast (max. 10 minutes)

– typically tests take large part of build time

– monitor and tune test performance

• execute tests from very beginning (or die)

• make it impossible to deploy failed builds

• programmatically assessing and fixing

blame is a bad practice

63

Ant and Maven

• Integration �

• Ant < 1.7

– add junit.jar to Ant boot classpath (lib)

– each JUnit 4.x test class needs to be wrapped as

a JUnit 3.8 suite with JUnit4TestAdapter

• Maven

– Hudson (uses Maven) continues if tests failed

– build is marked as unstable

64

Running JUnit in Parallel (Ant)

• causes lots of problems �

– separate class loaders - more PermSpace

– same class loader - singletons
(<junit … reloading="false">)

– separate VM instances = high start-up cost
(<junit ... fork="yes">)

forkmode="perBatch" only since Ant 1.6.2

– load balancing of worker threads/VMs?

– database race conditions, dead locks, ...

65

Distributed JUnit

• not all tests are the same...

• small/fast tests should not be distributed

– distributing takes up to 90% of total time

• performs best with a few long running tests

• Distributed JUnit (ComputeFarm & Jini)

• GridGain’s JunitSuiteAdapter

• commercial build servers/agent technology

66

67

Some Good Books...

• Kent Beck - Test Driven

Development. By Example (2002)

• Andy Hunt, Dave Thomas -

Pragmatic Unit Testing in Java with

JUnit (2003)

68

Some Good Books...

• Klaus Meffert - JUnit Profi-Tipps

(2006)

• Michael Feathers - Working

Effectively with Legacy Code

(2007)

69

Now go and write some tests!

70

Q&A

• Thank you for listening.

• http://www.code-cop.org/presentations/

71

Image Sources

• http://rubystammtisch.at/

• http://www.flickr.com/photos/4344208

2@N00/296362882/

• http://www.flickr.com/photos/eszter/

144393616/

• http://www.flickr.com/photos/sneddon/

2413980712/

72

Image SourcesImage Sources

• http://www.flickr.com/photos/paopix/

184238679/

• http://www.flickr.com/photos/teotwaw

ki/164966631/

• http://www.flickr.com/photos/paulk/

3166328163/

• http://www.flickr.com/photos/otolithe/

1831281833/

73

Image Sources

• http://www.flickr.com/photos/rainfores

tactionnetwork/420117729/

• http://www.flickr.com/photos/ppdigital

/ 2054989998/

• http://www.flickr.com/photos/good_da

y/ 48642035/

• http://www.flickr.com/photos/shelley1

3/ 2653029303/

