Practical Unit Testing

“Good programmers write code, great programmers write tests.”

Peter Kofler, ‘Code Cop’
JSUG, June 2009

Who am 1?

Ph.D. in Applied Mathematics

Java developer since 1999

fanatic about code quality since 2004
appointed ‘Code Cop’ in 2006

Senior Software Engineer at s-I'T Solutions
(Spardat), Erste Group

Agenda

JUnit Basics
— Test Methods, Assertions, Fixtures

Advanced Topics
— Privates, Mocks, Timings, Singletons, J2EE

Tuning
Code Coverage

JUnit Extensions
— Tools, Scripting, JUnit and the Build

A Little Survey...

no knows xUnit?
no knows JUnit 47

ho ever wrote a unit test?

no writes tests and tries to write them
first?

Who checks the coverage?
Who ever produced a bug?

We Make Mistakes

e atleastIdo... ©

 number of bugs proportional loc
— 2 bugs per 1.000 loc (7 or even more...)
— 1 bug per 10.000 loc 1n critical software
* be paranoid when you write software

— Assume you have lots of bugs.

— Try to find these bugs aggressively.

I find your lack of tests disturbing.

TESTING

| FIND YOUR LACK OF TESTS DISTUREBING.

Wait - We Have Tests

e almost every project has some “tests”

 almost all of them are useless ®
— experiments how to use some library
— main methods, waiting for user input, ...

— tests that initialise the whole application and
check nothing

— tests that fail since long, etc.
No You Don’t!

7

JUnit

a unit testing framework

active, dynamic black-box tests

— some call 1t white-box tests (tbd)

works best with a number of small tests
Y ou should know it (no excuses!)

— You should use 1t (no excuses!)

— I will not explain it here = www.junit.org

Test Methods

 unit test tests the methods of a single class

* test case tests the response of a single
method to a particular set of inputs

— multiple test cases for a single method
— public void testMethod () Or @Test
— test methods should be short, simple

— tests without test methods are pointless
—> Findbugs and PMD

10

Assertions

 Don’t do any output from your unit tests!

e check expectations programmatically
— assertkEquals, assertNull, assertTrue,...
— test method without assert is pointless (PMD)

— one test method - one assertion (tbd)

e some work around PMD with assertTrue (true)

e 2 PMD: UnnecessaryBooleanAssertion

e test runner reports failure on each test

11

Proper Assertions

add messages to asserts (tbd) (= PMD)

assertTrue (a.equals (b)) NO message,
better use assertEquals (a,b) (=2 PMD)

assert in Thread.run () not noticed
(= Findbugs: 1JU_...)

assert float in ranges of precision:
assertEquals (expected, actual,
S*Math.ulp(expected))

12

Assertions (JUnit 4)

« assertArrayEquals (.) for atom arrays
and Object

e but assertEquals (int, int) removed
— not needed any more (auto boxing)
— problems with mixed params, e.g. (int, byte)
— JUnit 3: promoted to (int, int), succeeds
— JUnit 4: boxed to (Integer, Byte), fails

13

Asserting Exceptions

e JUnit 3 try-catch code:

try {
// code that should cause an exception
fail ("no exception occurred");

} catch (SomeException success) {
// check exception type/parameters

e JUnit 4: eTest (expected)annotation:

WTest (expected=SomeException.class)
public void testThrows () {
// code that should cause an exception

14

Fixtures (JUnit 3)

e sets up data needed to run tests
e JUnit 3: setUp (), tearDown ()

— don’t forget to call super.setUp () first

— don’t forget to call super.tearDown () last

— don’t forget 1t (!)
— Findbugs: 10U_SETUP_NO_SUPER, IJU_. ..

 for fixture in JUnit 3.x that runs only once,
use the Test Setup decorator

15

JUnit 3 Test Setup Decorator

public class TheTest extends TestCase {
// test methods

public static Test suite() {

return new TestSetup (new TestSuite (TheTest.class)) {
protected void setUp () throws Exception ({
super.setUp() ;
// set—-up code called only once

}

protected void tearDown () throws Exception {
// tear—-down code called only once
super.tearDown () ;

}
b

16

e JUnit 4:

Fixtures

@Before, QAfter

— run methods of super classes

— only once: @BeforeClass, RAfterClass

e test data 1in database 1s problematic

— test has to insert 1ts own preconditions
— large data sets = DbUnit

e Remem

per: Test data 1s more likely to be

wrong t

nan the tested code!

17

Test Code Organisation

e test code loc ~ functional code loc

e same quality as production code
— always built with test code

— execute tests as soon/often as possible

 parallel package hierarchy
— no *.test sub-packages! (tbd)
— folder test (simple), src/test/java (Maven)

— package-access!

18

Test Class Organisation

e create your own base test case(s)
— named *TestCase Or *TC (not *Test)

— common methods, initialisation code

— custom asserts, named assert* (PMD)

e name test classes <tested class>Test

19

= J-I'-'_-jﬁl\.n.rliu—-'\..".
UEEIJI.,I W= ===

T D4 4
-1

IwiiLsse
nErs B

Agenda

JUnit Basics v

— Test Methods, Assertions, Fixtures

Advanced Topics
— Privates, Mocks, Timings, Singletons, J2EE

Tuning
Code Coverage

JUnit Extensions
— Tools, Scripting, JUnit and the Build

21

Testing Private Data

e “Wishing for White Box Testing (i.e. check
a private field) 1s not a testing problem, it 1s
a design problem.”

— If you want to check internals - improve design.

 if you have to:

— Reflection: member.setAccessible (true)

22

Mocks

23

When to Use Mocks

e To have a “real” unit test (cut dependencies)

e “It 1s much simpler to sitmulate behaviour
than it 1s to recreate that behaviour.”

e use a mock when the real object 1s
— non-deterministic (e.g. current time)
— problematic during execution (e.g. user input)
— difficult to trigger (e.g. network error)

— not existing yet (team collaboration)

24

How to Mock an Object

* by hand

— implement 1ts interface (Eclipse Ctrl-1)

— subclass 1t (beware complex constructors)
« java.lang.reflect.Proxy

— since 1.3

— only for interfaces

— nasty for more than 1 method

25

Dynamic Mock Frameworks

 KasyMock, jMock, ... (in fact since 1.5)
* mock interfaces (Proxy)

* mock non final classes (cglib)

import statilic org.easymock.EasyMock. *;

SomeInt mock = createMock (SomeInt.class);
expect (mock.someMethod ("param")) .andReturn (42) ;
replay (mock) ;

// run the test which calls someMethod once
verify (mock) ;

26

Mocks 1n Spring

* JoC make it easy, just set the mock

e combination of context/mocks

— needs mocks inside Spring:

<bean id="someMock" class="org.easymock.EasyMock"
factory-method="createMock">
<constructor—arg index="0" value="...SomeBean" />

</bean>
— see http://satukubik.com/2007/12/21/spring-tips-initializing-bean-using-easymock-for-unit-test/

27

Enabling Mocking

* Program to interfaces, not implementations.

— 1nterfaces are easier to mock

e [Law

of Demeter

— style guideline

— “Only talk to your immediate friends.”

— cal

CO|
ex

ling methods on objects you get from other
laborators 1s trouble - your mocks must

pose internal state through these methods

28

Limits of Mocking

* behave accordingly to your expectations
— Do you know the mocked class good enough?

e complex mocks are error prone
— e.g. state machines
— refactor using Law of Demeter

e replace the right classes
— not the tested ones!
— focus on what goes 1nside than what comes out

29

Testing Timings

e timings (e.g. timeouts) are difficult
— timing/scheduling 1s not guaranteed
— short timings almost always fail

— long timings slow down the execution

* You will never get it right!

— esp. not for Windows and Unix at same time

e = mock the timer

30

Singletons are evil!

* most overused design pattern
— typical: public static Instance getInstance()

— static methods (“‘mingletons™), e.g.
System.currentTimeMillis ()

— static fields (“fingletons™)
— ThreadLocal

* most likely you have too many of them
e see http://c2.com/cgi/wiki?SingletonsAreEvil

32

Testing S

e problems for testing

— evil

ingletons

— unknown dependencies

— 1nitialisation often ex|

— side effects 1n same c|

pensive (fixture)

lass loader

— CONCUITeNCy 1ssues w.

— can’t mock

nen testing in parallel

33

Testing Singletons “Brute Force™

 straight forward
— (fake) initialise singleton in fixture (setUp)
— use Ant’s forkmode=“perTest”

— slow?

* if singletons can be reset
— cleanup singleton in shutDown
— make sure double 1nitialisation fails

— still slow, still no mock

34

Testing Singletons “AOP”

context-sensitive modification with Aspect]J

returning a mock instead of proceeding
(around advice)

per-test-case basis (using various pointcuts)

— execution(public void SomeTest.test*())

— cflow(inTest ()) && //other conditions
see http:// www.ibm.com/developerworks/java/library/j-aspectj2/

mock v, but .aj files get nasty

35

Retactor Singletons

e for new code - avoid singletons

e refactor

— pass singleton instance from outside to certain
methods as argument, mock it

— create a global registry for all singletons, which
1s the only singleton then, register mocks there

— make whole singleton a Spring bean with
singleton scope, mock it

36

Testing J2EE - JNDI

e use mocks like Simple-JNDI or MockEJB

protected void setUp() throws Exception {
super.setUp () ;
MockContextFactory.setAsInitial () ;
new InitialContext () .bind("name", stuff),;

}

protected void tearDown () throws Exception {
MockContextFactory.revertSetAsInitial () ;

super.tearDbDown () ;

37

Testing J2EE - JMS

e use mock implementation like MockEJB
e use in memory JMS like ApacheActiveMQ

<bean id="factory" class="..ActiveMQConnectionFactory">
<property name="brokerURL” value="vm://broker?
broker.persistent=false&
broker.usedJmx=false" />
</bean>
<bean id="queue" class="...command.ActiveMQQueue">
<constructor—-arg value="SomeQueue" />

</bean>

38

Testing J2EE - Servlet

call them (HttpClient, HttpUnit)

— needs deployment and running server @
— 1ntegration test
— beware GUI changes

run them 1n container (Cactus)
embedded server (Jetty servletTester)
mock container (ServletUnit of HttpUnit)

mock/implement interfaces yourself

39

Testing J2EE - EJB

embedded server (Glassfish) ?
— all since EJB 3.1

run them 1n container (Cactus)
mock container (MockEJB)

using an aspect to replace EJB lookups

EJB 3.x are just POJOs v/

40

ROEE R e IR E e
Lijthiads bk i A A IRREA
o SRR

ukathleticsnet |B|B I

(=5

Agenda

JUnit Basics v
— Test Methods, Assertions, Fixtures

Advanced Topics v

— Privates, Mocks, Timings, Singletons, J2EE
Tuning

Code Coverage

JUnit Extensions
— Tools, Scripting, JUnit and the Build

42

Tune Test Performance

e profile test suite - 1t’s run very often!

e Ant/JUnit

report contains execution times

e target longest running tests

— tune as any Java program (CPU, heap)

— mock ex]

— avoid ex]

pensive/slow objects

pensive set-up (e.g. Spring Context)

— move ex

pensive set-up to @BeforeClass

43

Test Performance - Database

e database access 1s slow
e mock out database
— difficult for complex queries

e use embedded memory database
— e.g. HyperSQL DataBase (HSQLDB), H2

— beware of duplicating schema info
— Hibernate’s import.sql

44

DB/Integration Test Performance

with database more an integration test

— no problem - we want to test this too
don't use fixtures

do not commit

connection pool

tune database access (as usual)

45

i i i . '-'I +f
S SR A X

o 4 i} . ‘.
....—I_r--i.....lun.h-glln..n. St 2l (e
e, - P "

T R T ¥ A TEE e R G T
) o L H 3 P E H

F oAl
. g
)
1

Agenda

JUnit Basics v

— Test Methods, Assertions, Fixtures

Advanced Topics v
— Privates, Mocks, Timings, Singletons, J2EE

Tuning v
Code Coverage

JUnit Extensions
— Tools, Scripting, JUnit and the Build

47

Code Coverage

 tracks comprehensiveness of tests
— % of classes/methods/lines that got executed

— 1dentifies parts of program lacking tests

e 85-90% 1s “good enough”
— can’t reach 100% (catch-blocks etc.)
— no need to test everything (getters etc.)

— at least focus on core systems (business critical)

48

Code Coverage Tools

« EMMA

— 1nstrument classes offline or on the fly

— detects partial coverage (if/short circuit)
— Ant, Maven, Eclipse (EclEmma)

— even able to track Eclipse plugins

— also used 1n test staging to test the testers

e Cobertura
e ctcC.

49

“Don’t Be Fooled™

comprehensiveness # quality!
— high coverage does not mean anything

— tools like AgitarOne create it
see http:// www.ibm.com/developerworks/java/library/j-cq01316/

“Test state coverage, not code coverage.”
(Pragmatic Tip 65)

— difficult to measure

Crap4J “metric”

50

Development Process

e code test & class (or class & test)

e run tests with EcIEmma (or on build)
— all important methods executed?
— all relevant if-branches executed?
— most common error cases executed?

— just browse the report line by line...

51

How to Get Coverage

difficult to add tests to an existing program

wasn’t written with testing in mind

better to write tests before

—> Test Driven Development (TDD)
Red/Green/Refactor

Design to Test (Pragmatic Tip 48)

52

53

Legacy Code

... 1s code without test. (Michael Feathers)
write test for new features

create tests for bug reports, then fix bugs
— Find Bugs Once (Pragmatic Tip 66)

find insertion points/bring them under test
— for more see “Working Effectively with Legacy Code”

refactor for testability (TestabilityExplorer)
— see http://code.google.com/p/testability-explorer/

54

But Management Won’t Let Me

e Testing 1s a mindset - You have to want it.

* A thoroughly tested program will take twice
as long to produce as one that's not tested.

— you need time to write tests A

"

[

‘?
T ¥

— argue for 1t

— or just lie =2
 hide time in your estimations
* say the feature 1s not finished
e write tests before, so you can’t finish without tests

55

Agenda

JUnit Basics v

— Test Methods, Assertions, Fixtures

Advanced Topics v
— Privates, Mocks, Timings, Singletons, J2EE

Tuning v
Code Coverage v

JUnit Extensions
— Tools, Scripting, JUnit and the Build

57

JUnit Extensions (e.g.)

DbUnit - database fixtures
HtmlUnit/HttpUnit - GUI-less browser

— typical for functional/integration tests

JUnitPerf - measure performance

— no ordinary unit test = different package

SWTBot - Ul testing SWT/Eclipse
XMLUnit - XML asserts

58

New Trend: Scripting Languages

“Testing 1s a scripting problem.”
— dynamically typed, easier to write tests

“If I can write tests 1n a rapid manner, I can
view their results quicker.” (Andy Glover)

need tight Java integration

e.g. using Groovy

— GroovyTestCase extends TestCase
— see http://www.ibm.com/developerworks/java/library/;-pg11094/

59

(J)Ruby Test::Unit

e typical xUnit implementation

o asserts like
— assert raise, assert throws
e advanced frameworks

— JtestR - JRuby integration “so that running
tests 1s totally painless to set up”

— RSpec - Behaviour Driven Development
framework for Ruby

60

ScalaTest

run JUnit in ScalaTest

— with wrapper Junit3WrapperSuite

run ScalaTest in JUnit (JUnit3Suite)

Specs - Behaviour Driven Development

ScalaCheck - property-based testing

— automatic test case generation
— specify("startsWith", (a:String,

b:String)

=>

(a+b) .startsWith (a)

)

61

JUnit and The Build

the build must be fast (max. 10 minutes)
— typically tests take large part of build time

— monitor and tune test performance
execute tests from very beginning (or die)
make 1t impossible to deploy failed builds

programmatically assessing and fixing
blame 1s a bad practice

62

Ant and Maven

e Integration v’

e Ant< 1.7
— add junit.jar to Ant boot classpath (lib)

— each JUnit 4.x test class needs to be wrapped as
a JUnit 3.8 suite with JUnit4TestAdapter

e Maven
— Hudson (uses Maven) continues 1f tests failed

— build 1s marked as unstable

63

Running JUnit 1n Parallel (Ant)

e causes lots of problems ®
— separate class loaders - more PermSpace

— same class loader - singletons
(<junit .. reloading="false">)

— separate VM 1instances = high start-up cost
(<junit ... fork="yes">)
forkmode="perBatch" only since Ant 1.6.2

— load balancing of worker threads/VMs?

— database race conditions, dead locks, ...

64

Distributed JUnait

not all tests are the same...

small/fast tests should not be distributed
— distributing takes up to 90% of total time

performs best with a few long running tests

Distributed JUnit (ComputeFarm & Jini)
GridGain’s JunitSuiteAdapter

commercial build servers/agent technology

65

Some Good Books...

e © Kent Beck - Test Driven

Development. By Example (2002)

 Andy Hunt, Dave Thomas -
Pragmatic Unit Testing in Java with
JUnit (2003)

67

Some Good Books...

BN - Klaus Meffert - JUnit Profi-Tipps
| (2006)

* Michael Feathers - Working
o all Effectively with Legacy Code

WORKING

EFFECTIVELY (2007)
WITH
LEGACY CODE

68

Now go and write some tests!

We Can Do It!

i

7\

69

Q&A

e Thank you for listening.

 http://www.code-cop.org/presentations/

70

Image Sources

http://rubystammtisch.at/

http://www.tlickr.com/photos/4344208
2@N00/296362882/

http://www.flickr.com/photos/eszter/
144393616/

http://www.tlickr.com/photos/sneddon/

2413980712/

71

Image Sources

) ¢ http://www.flickr.com/photos/paopix/

184238679/

g ¢ * http://www.tlickr.com/photos/teotwaw
T ki/164966631/

= * http://www tlickr.com/photos/paulk/

~ 3166328163/

@@= * http://www.tlickr.com/photos/otolithe/
=% 1831281833/

72

Image Sources

http://www.flickr.com/photos/rainfores
tactionnetwork/420117729/

http://www.tlickr.com/photos/ppdigital
/ 2054989998/

http://www.flickr.com/photos/good_da
y/ 48642035/

http://www.tlickr.com/photos/shelley1
3/ 2653029303/

73

