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1) So what is it all about?

The Prime Factors
Kata (Demo)



What Exactly Will We Do Now?

● write code together
● using TDD
● see techniques 

and patterns
● discuss while 
     doing



The Requirements.

• Write a class named “PrimeFactors” that 
has one static method: generate.
– The generate method takes an integer 

argument and returns a List<Integer>.
– That list contains the prime factors in 

numerical sequence.

      
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata

http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata


First Some Math.

● Prime Number: a natural number > 1 
that has no divisors other than 1 and itself.

● e.g. 2, 3, 5, 61, 67, ..., 997, ..., 243112609-1, …
● Prime Factors: the prime numbers that 
divide an integer exactly without remainder.

● e.g. 2 = 2, 
4 = 2 * 2, 
24 = 2 * 2 * 2 * 3
288 = 25 * 32



The Requirements (for Mortals).

• code a file/module/class “PrimeFactors”
• code a function/method/routine 

“generate”
• accept an integer number as parameter
• return the prime factors of that number



Demo
(Code Kata)



Keep the bar green to keep the code clean.



Unit Testing

• test individual units
• isolate each part
• show that the individual parts are correct
• regression testing
• sort of living documentation
• executed within a framework

http://en.wikipedia.org/wiki/Unit_testing

http://en.wikipedia.org/wiki/Unit_testing


Test-Driven Development

• add a test
• run all tests and see if the new one fails
• write some code
• run all tests and see them succeed
• refactor code mercilessly
• „Red Green Refactor“

http://en.wikipedia.org/wiki/Test_Driven_Development

http://en.wikipedia.org/wiki/Test_Driven_Development


A minute ago all 
their code worked



Refactoring

Refactoring is a technique 
for restructuring

an existing body of code, 
altering its internal structure

without changing 
its external behavior.

(Martin Fowler)



Refactoring

•  small behavior preserving transformations
•  sequence of transformations produce a 

significant restructuring
•  each transformation is small, less likely to 

go wrong
•  system is kept fully working after each 

change
•  verified by working tests





Code Coverage

comprehensiveness of tests



Beware!

comprehensiveness  quality!



Small Advice

Never measure 
developers by 

Code Coverage!



Demo
(Coverage in Eclipse)



Demo
(Jenkins)





Continuous
Integration



Continuous Integration

• Maintain a code repository
• Automate the build
• Make the build self-testing
• Everyone commits every day
• Every commit should be built
• Keep the build fast
• Everyone can see the results of the build

http://en.wikipedia.org/wiki/Continuous_integration

http://en.wikipedia.org/wiki/Continuous_integration


Immediate Feedback
and

Early Warning



Demo
(Jenkins)



2) Why should we use TDD?

• Writing tests takes time

• and we need to deliver client 
value.

I don't have time.
I don't have time.
I don't have time.



Do you still use that one?



Discussion

•  What do you think are the benefits of 
TDD?
–  rapid feedback
–  …
–  ...



Benefits

• speed up 
• coverage

–  measurable validation of correctness
• quality

–  proven to save maintenance costs

• creates a detailed specification



Benefits

• improve design 
–  drive the design of a program
–  think in exposed API



Problems

• missing management 
buy-in

• high ramp-up time
• still need

integration 
tests

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/


TDD will not  fix missing skills!

• badly written tests
–  brittle
–  blinking
–  slow
–  duplicate code
–  maintenance burden
–  wrong abstractions
–  not really unit tests



Because TDD is hard!

• need to know OO, 
design, abstraction, ...

• new style of thinking
• need self-discipline
• (learning curve)



3) What you need to do



Problem Indicators: CI

• blinking builds
• builds broken for long time
• increasing build

execution time
• decreasing code

coverage



Problem Indicators: Tests

• slow
• fragile
• no detailed feedback
• “Ice-Cream Cone”



Problem Indicators: Developers

• claiming that they can't write tests
• claiming that they can't fix tests
• wanting to delete tests



“Buzzwords” Summary

• Techniques
–  Unit Testing 
–  Test Driven Development
–  Refactoring
–  Code Coverage
–  Continuous Integration

• Management Buy-In
• Keep an eye on the CI server



Support TDD

Do not compromise
on techniques!



Thank 
You
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