
Test Driven Development
and Related Techniques
For Non-Developers ;-)

IBM 2012

Peter Kofler, ‘Code Cop’
@codecopkofler

www.code-cop.org

Copyright Peter Kofler, licensed under CC-BY.

http://www.code-cop.org/

Peter Kofler

• Ph.D. (Appl. Math.)
• (Java) Software Developer
• with IBM since 1 year
• SDM Costing, IGA, GBS

The opinions expressed here are my
own and do not necessarily represent

those of current or past employers.

Agenda

1) What does it
look like?

2) Why is it
important?

3) What you
need to do!

4) Summary

1) So what is it all about?

The Prime Factors
Kata (Demo)

What Exactly Will We Do Now?

● write code together
● using TDD
● see techniques

and patterns
● discuss while
 doing

The Requirements.

• Write a class named “PrimeFactors” that
has one static method: generate.
– The generate method takes an integer

argument and returns a List<Integer>.
– That list contains the prime factors in

numerical sequence.

http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata

http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata

First Some Math.

● Prime Number: a natural number > 1
that has no divisors other than 1 and itself.

● e.g. 2, 3, 5, 61, 67, ..., 997, ..., 243112609-1, …
● Prime Factors: the prime numbers that
divide an integer exactly without remainder.

● e.g. 2 = 2,
4 = 2 * 2,
24 = 2 * 2 * 2 * 3
288 = 25 * 32

The Requirements (for Mortals).

• code a file/module/class “PrimeFactors”
• code a function/method/routine

“generate”
• accept an integer number as parameter
• return the prime factors of that number

Demo
(Code Kata)

Keep the bar green to keep the code clean.

Unit Testing

• test individual units
• isolate each part
• show that the individual parts are correct
• regression testing
• sort of living documentation
• executed within a framework

http://en.wikipedia.org/wiki/Unit_testing

http://en.wikipedia.org/wiki/Unit_testing

Test-Driven Development

• add a test
• run all tests and see if the new one fails
• write some code
• run all tests and see them succeed
• refactor code mercilessly
• „Red Green Refactor“

http://en.wikipedia.org/wiki/Test_Driven_Development

http://en.wikipedia.org/wiki/Test_Driven_Development

A minute ago all
their code worked

Refactoring

Refactoring is a technique
for restructuring

an existing body of code,
altering its internal structure

without changing
its external behavior.

(Martin Fowler)

Refactoring

• small behavior preserving transformations
• sequence of transformations produce a

significant restructuring
• each transformation is small, less likely to

go wrong
• system is kept fully working after each

change
• verified by working tests

Code Coverage

comprehensiveness of tests

Beware!

comprehensiveness  quality!

Small Advice

Never measure
developers by

Code Coverage!

Demo
(Coverage in Eclipse)

Demo
(Jenkins)

Continuous
Integration

Continuous Integration

• Maintain a code repository
• Automate the build
• Make the build self-testing
• Everyone commits every day
• Every commit should be built
• Keep the build fast
• Everyone can see the results of the build

http://en.wikipedia.org/wiki/Continuous_integration

http://en.wikipedia.org/wiki/Continuous_integration

Immediate Feedback
and

Early Warning

Demo
(Jenkins)

2) Why should we use TDD?

• Writing tests takes time

• and we need to deliver client
value.

I don't have time.
I don't have time.
I don't have time.

Do you still use that one?

Discussion

• What do you think are the benefits of
TDD?
– rapid feedback
– …
– ...

Benefits

• speed up
• coverage

– measurable validation of correctness
• quality

– proven to save maintenance costs

• creates a detailed specification

Benefits

• improve design
– drive the design of a program
– think in exposed API

Problems

• missing management
buy-in

• high ramp-up time
• still need

integration
tests

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/

TDD will not fix missing skills!

• badly written tests
– brittle
– blinking
– slow
– duplicate code
– maintenance burden
– wrong abstractions
– not really unit tests

Because TDD is hard!

• need to know OO,
design, abstraction, ...

• new style of thinking
• need self-discipline
• (learning curve)

3) What you need to do

Problem Indicators: CI

• blinking builds
• builds broken for long time
• increasing build

execution time
• decreasing code

coverage

Problem Indicators: Tests

• slow
• fragile
• no detailed feedback
• “Ice-Cream Cone”

Problem Indicators: Developers

• claiming that they can't write tests
• claiming that they can't fix tests
• wanting to delete tests

“Buzzwords” Summary

• Techniques
– Unit Testing
– Test Driven Development
– Refactoring
– Code Coverage
– Continuous Integration

• Management Buy-In
• Keep an eye on the CI server

Support TDD

Do not compromise
on techniques!

Thank
You

Peter Kofler

@codecopkofler

www.code-cop.org

http://www.code-cop.org/

CC Images
• Drive: http://www.flickr.com/photos/hjem/367306587/

• Judge: http://www.flickr.com/photos/eldave/6169431454/

• List: http://www.flickr.com/photos/kylesteeddesign/3724074594/

• Question mark: http://www.flickr.com/photos/oberazzi/318947873/

• Fence: http://www.flickr.com/photos/30830597@N08/3630649274/

• Coverage: http://www.flickr.com/photos/paulk/3166328163/

• Works: http://www.codinghorror.com/blog/archives/000818.html

• Cash: http://www.flickr.com/photos/mindfire/315274981/

• Steep: http://www.flickr.com/photos/worldofoddy/229501642/

• Want You: http://www.flickr.com/photos/shutter/105497713/

• Warn: http://www.flickr.com/photos/hugosimmelink/2252095723/

• Questions: http://www.flickr.com/photos/seandreilinger/2326448445/

http://www.flickr.com/photos/hjem/367306587/
http://www.flickr.com/photos/eldave/6169431454/
http://www.flickr.com/photos/kylesteeddesign/3724074594/
http://www.flickr.com/photos/oberazzi/318947873/
http://www.flickr.com/photos/30830597@N08/3630649274/
http://www.flickr.com/photos/paulk/3166328163/
http://www.codinghorror.com/blog/archives/000818.html
http://www.flickr.com/photos/mindfire/315274981/
http://www.flickr.com/photos/worldofoddy/229501642/
http://www.flickr.com/photos/shutter/105497713/
http://www.flickr.com/photos/hugosimmelink/2252095723/
http://www.flickr.com/photos/seandreilinger/2326448445/

